ar X iv : 0 81 0 . 27 53 v 1 [ m at h . ST ] 1 5 O ct 2 00 8 Concentration of the spectral measure of large Wishart matrices with dependent entries

نویسنده

  • Hannes Leeb
چکیده

We derive concentration inequalities for the spectral measure of large random matrices, allowing for certain forms of dependence. Our main focus is on empirical covariance (Wishart) matrices, but general symmetric random matrices are also considered.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : 0 81 0 . 27 50 v 1 [ m at h . FA ] 1 5 O ct 2 00 8 RANK ONE PERTURBATIONS AND SINGULAR INTEGRAL OPERATORS

We consider rank one perturbations Aα = A+α( · , φ)φ of a self-adjoint operator A with cyclic vector φ ∈ H−1(A) on a Hilbert space H. The spectral representation of the perturbed operator Aα is given by a singular integral operator of special form. Such operators exhibit what we call ’rigidity’ and are connected with two weight estimates for the Hilbert transform. Also, some results about two w...

متن کامل

ar X iv : 0 81 0 . 26 81 v 1 [ m at h . PR ] 1 5 O ct 2 00 8 FROM RANDOM WALKS TO ROUGH PATHS

Donsker's invariance principle is shown to hold for random walks in rough path topology. As application, we obtain Donsker-type weak limit theorems for stochastic integrals and differential equations.

متن کامل

ar X iv : 0 81 0 . 20 72 v 1 [ m at h . SP ] 1 2 O ct 2 00 8 ABSOLUTELY CONTINUOUS AND SINGULAR SPECTRAL SHIFT FUNCTIONS

Given a self-adjoint operator H 0 , a self-adjoint trace class operator V and a fixed Hilbert-Schmidt operator F with trivial kernel and co-kernel, using limiting absorption principle an explicit set of full Lebesgue measure Λ(H 0 , F) ⊂ R is defined, such that for all points of this set the wave and the scattering matrices can be defined unambiguously. Many well-known properties of the wave an...

متن کامل

ar X iv : 0 70 8 . 28 95 v 2 [ m at h . PR ] 1 5 O ct 2 00 7 RANDOM MATRICES : THE CIRCULAR LAW

Let x be a complex random variable with mean zero and bounded variance σ 2. Let Nn be a random matrix of order n with entries being i.i.d. copies of x. Let λ 1 ,. .. , λn be the eigenvalues of 1 σ √ n Nn. Define the empirical spectral distribution µn of Nn by the formula µn(s, t) := 1 n #{k ≤ n|Re(λ k) ≤ s; Im(λ k) ≤ t}. The following well-known conjecture has been open since the 1950's: Circul...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008